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Tetra-tert-butyldisilene 3 and di-tert-butylsilylene 2, formed by photolysis of the cyclotrisilane 1, react with the CC 
double bonds of alkenes and 1,3-dienes to provide the silirane 4 together with the 1,2-disilacyclobutane 5 and the 
2-vinylsiliranes 6 and 7; the molecular structure of the [2 + 21 cycloaddition product 5, formed by the reaction of 3 
with ortho-methylstyrene, was determined by X-ray crystallography. 

In spite of the presence of spatially-demanding substituents, 
which are necessary to shield the Si=Si double bond, the stable 
or relatively stable disilenes have frequently proved to be 
more reactive than simple alkenes.1 For example, they 
undergo smooth [2 + 21 cycloaddition reactions with the CO 
and CS double bonds of ketone$& and thioketoness as well as 
with the triple bonds of acetylenes2.3 and nitriles.6 Surpris- 
ingly, however, the corresponding cycloaddition reactions of 
disilenes to alkenes have not yet been demonstrated convinc- 
ingly. Tetramesityldisilene, for instance, does not react with 
either alkenes or conjugated dienes.7 

Upon photolysis (Scheme l) ,  hexa-tert-butylcyclotrisilane 
18 furnished both di-tert-butylsilylene 2 and tetra-tert-butyldi- 
silene 3.9 In the reaction of 1 with ortho-methylstyrene both 
1 ,l-di-tert-butyl-2-(2-methylphenyl)silirane (4; colourless oil, 
bp 62-64 "C/0.02 mbar, yield: 44%) and 1,1,2,2-tetra-tert- 
bu tyl-3-( 2-me thylpheny1)- 1,2-disilacyclobutane (5;  colourless 
crystals, mp 119-120 "C, yield: 70%) are formed by [2 + 11 and 
[2 + 21 cycloadditions of 2 and 3, respectively, to the 
olefinic double bond. The constitutions of both products were 
substantiated by lH, 13C and 29Si NMR data? and confirmed, 
in case of 5 ,  by an X-ray structure analysis.$ 

Compound 5 (Fig. 1) contains a non-planar four-membered 
ring with a folding angle of approximately 39" between the 
planes formed by the atoms C(1)-Si( 1)-Si(2) and Si(2)-C(2)- 
C(1). The endocyclic Si-Si and Si-C as well as the exocyclic 
Si-C bond lengths are, in part, markedly longer than the 
normal values. They thus differ from those of the 1,2- 
disilacyclobutane10 formed by a head-to-head linkage of two 
silene molecules and where the steric overloading is rather 
reflected in a considerable lengthening of the endocyclic C-C 
bond. 

The photolysis of 1 in the presence of 1,3-dienes (Scheme 2) 
proceeds differently since the disilene 3 now reacts preferen- 
tially to furnish Diels-Alder products and ene adducts11 
together with only small amounts of the [2 + 21 cycloaddition 
products. In contrast, the silylene 2 does not react to yield the 
[4 + 11 cycloaddition products but rather gives rise to 2- 
vinylsiliranes. Thus, it behaves similarly to dimesitylsilylene 
which also reacts with 1,3-dienes to give 2-vinylsiliranes in 
addition to other products. 12 The larger spatial requirements 
of the tert-butyl groups in comparison to the mesityl groups, 
however, do lead to some peculiarities in the products. 

Thus, the 1H and 13C NMR spectra of 2-methyl-2-iso- 
propenyl-1,l-di-tert-butyl-1-silirane (6, colourless oil, bp 42- 
45 "C12.5 mbar, yield: 40%) obtained from 2 and 2,3- 
dimethylbutadiene exhibits pronounced line broadening 
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which is indicative of a restriction of the free rotation about 
the central C(2)-C(3) bond.$ Various H,H and H,C correl- 
ated spectra, in particular the COLOC (correlation spectro- 
scopy for long-range couplings) and the NOESY NMR 
spectra, clearly demonstrate that 6 possesses a preferred 
conformation in solution in which the =CH2 group and the di- 
tert-butylsilylene groups are directly adjacent so that 6 can be 
considered as a precursor for a possible [4 + 11 cycloaddition. 
On the other hand, 1 ,l-di-tert-butyl-2-isopropenyl-l-silirane 
(7; colourless oil, bp 52 "CA.5 mbar, yield: 36%), obtained 
from 2 and 2-methylbutadiene, exhibits fully unrestricted free 
rotation on the NMR timescale, i.e. all 13C NMR and 29% 

NMR resonances appear as sharp singlets. In this case, and in 
contrast to the corresponding addition product from dimesit- 
ylsilylene,12 the addition occurs exclusively at the sterically 
less hindered -CH=CH2 bond. This is corroborated by the 1H 
NMR spectra, in which the hydrogen atoms of the three- 
membered ring appear as an AMX system, and by the DEPT 
13C NMR measurements. 
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Fig. 1 Molecular structure of 5 (hydrogen atoms omitted). Only one of 
the two independent molecules is shown. Selected bond distances 
(pm) and angles (") as follows: Si( 1)-Si(2) 240.2( l), Si( 1)-C( 1) 
196.3(3), Si(2)-C(2) 189.3(3), C(l)-C(2) 156.1(4), C(l)-Si(l)-Si(2) 
74.7( l), Si(l)-Si(2)-C(2) 74.8(1). Si(2)-C(2)-C(l) 100.8(2), C(2)- 
C(l)-Si(2) 96.4(2). 
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9H, But), 1.08 (s, 9H But), 1.55 (t, br, lH ,  CH), 1.88 (s, 3H, CHs), 
4.80-4.90 (2 x S, 2H, =CH2). 13C NMR 6 0.85 (CH2), 18.68 (C,), 
20.46 (C,), 23.09 (CH), 26.34 (CH3) 29.89 (Cp), 30.79 (q) 105.25 (C 
=CH2), 145.57 (C=CH2). 29Si NMR 6 -48.59 (s). C, and C, refer to 
primary and quaternary carbon atoms respectively. 

Footnotes 
t NMR data were recorded at room temp. in C6D6 solution at 300 
MHz (*H), 75.4 MHz ( W )  and 59.9 MHz (29Si). Selected spectro- 
scopicdata for 4: 'H NMR 6 0.80 (s, 9H, But), 1.06 (s, 9H, But), 0.85- 
1.30 (m. 2H, CH2), 1.89-2.00 (m, lH ,  CH), 2.25 (s, 3H, Me), 6.97- 
7.21 and 7.30-7.39 (m, 4H). 29Si NMR 6 -49.97 (s). 5:  'H NMR 6 
1.01. 1.23, 1.24. 1.28 (each s, 9H. But), 1.38 (dd, lH,  CH2, 2 J ~ , ~  14 
Hz, 3JH.H 8 Hz), 1.80 (dd, lH ,  CH2, 3JH.H 14 Hz), 2.22 (s, 3H, Me), 
3.03 (dd, br, lH ,  CH), 7.00-7.10, 7.19-7.27 and 7.50-7.55 (m, 4H). 
29Si NMR 6 20.59 (s), 38.92 (s). + Crystal data for 5:  C25H46Si2, M z  402.8, crystal size = 0.75 X 0.75 X 
0.85 mm, triclinic, space group Pl, a = 1079.90(10), b = 1584.0(2), c 
= 1663.5(2) pm, (Y = 78.75(1), p = 77.26(1). y = 72.98(1)". V = 
2.6278(5) nm3, Z = 4, D, = 1.018 g ~ m - ~ ,  h (Mo-Kar) 71.073 pm, T = 
296(2) K, 20,,, 50", unique reflections 9223, observed [I > 2 a(I)] 
9219, variables 475. The structure was solved by direct phase 
determination using the SHELXL 93 program system and refined by 
full-matrix least-squares techniques. Hydrogen atoms were placed in 
calculated positions, and all other atoms were refined anisotropically, 
R = 0.063, wR2 = 0.1576. 

Atomic coordinates, bond lengths and angles, and thermal par- 
ameters have been deposited at the Cambridge Crystallographic Data 
Centre. See Information for Authors, Issue No. 1. 
5 Selected spectroscopic data for 6:  'H NMR 6 0.55 (d, l H ,  ring-CH2, 
2JH.H 12 Hz), 1.09 (s, 9H, But), ca. 1.1 (d, lH ,  ring-CH;?), 1.13 (s, 9H, 
But), 1.47 (s, 3H, ring Me), 1.85 (dd, 3H, Me, 4 J ~ , ~  1.4 HZ, 4 5 ~ . ~  0.7 
Hz), 4.80 (dq, 1H. X H 2 , ' J H . H  2.2 Hz, 4 J ~ , ~  1.4 HZ), 4.98 (dq, IH. 
S H 2 ,  ~ J H . H  2.2 Hz). '3C NMR 6 11.44 (CH2) 19.51 (Cq), 20.41 (C,), 
24.43 (CH3), 26.64 (ring-CH3), 30.93 (C,), 31.75 (Cp), 107.77 
(=CH2), 151.77 (C,). 29Si NMR 6 -44.21 (s). 7: 'H NMR 6 0.83 (t, 
lH ,  ring-CH2, 2 J H , H  ca. 35H.H 11 Hz), 0.96 (t, lH ,  ring-CHZ), 0.99 (s, 
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